Compare commits
1 Commits
v0.0.1a4
...
joshbradle
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
33a0cd8efe |
@@ -17,7 +17,6 @@ RUN pip install markitdown
|
||||
# Default USERID and GROUPID
|
||||
ARG USERID=10000
|
||||
ARG GROUPID=10000
|
||||
|
||||
USER $USERID:$GROUPID
|
||||
|
||||
ENTRYPOINT [ "markitdown" ]
|
||||
|
||||
18
README.md
18
README.md
@@ -33,20 +33,12 @@ Or use `-o` to specify the output file:
|
||||
markitdown path-to-file.pdf -o document.md
|
||||
```
|
||||
|
||||
To use Document Intelligence conversion:
|
||||
|
||||
```bash
|
||||
markitdown path-to-file.pdf -o document.md -d -e "<document_intelligence_endpoint>"
|
||||
```
|
||||
|
||||
You can also pipe content:
|
||||
|
||||
```bash
|
||||
cat path-to-file.pdf | markitdown
|
||||
```
|
||||
|
||||
More information about how to set up an Azure Document Intelligence Resource can be found [here](https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/how-to-guides/create-document-intelligence-resource?view=doc-intel-4.0.0)
|
||||
|
||||
### Python API
|
||||
|
||||
Basic usage in Python:
|
||||
@@ -59,16 +51,6 @@ result = md.convert("test.xlsx")
|
||||
print(result.text_content)
|
||||
```
|
||||
|
||||
Document Intelligence conversion in Python:
|
||||
|
||||
```python
|
||||
from markitdown import MarkItDown
|
||||
|
||||
md = MarkItDown(docintel_endpoint="<document_intelligence_endpoint>")
|
||||
result = md.convert("test.pdf")
|
||||
print(result.text_content)
|
||||
```
|
||||
|
||||
To use Large Language Models for image descriptions, provide `llm_client` and `llm_model`:
|
||||
|
||||
```python
|
||||
|
||||
@@ -42,8 +42,6 @@ dependencies = [
|
||||
"pathvalidate",
|
||||
"charset-normalizer",
|
||||
"openai",
|
||||
"azure-ai-documentintelligence",
|
||||
"azure-identity"
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# SPDX-FileCopyrightText: 2024-present Adam Fourney <adamfo@microsoft.com>
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
__version__ = "0.0.1a4"
|
||||
__version__ = "0.0.1a3"
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
import argparse
|
||||
import sys
|
||||
import shutil
|
||||
from textwrap import dedent
|
||||
from .__about__ import __version__
|
||||
from ._markitdown import MarkItDown, DocumentConverterResult
|
||||
@@ -52,48 +51,22 @@ def main():
|
||||
help="show the version number and exit",
|
||||
)
|
||||
|
||||
parser.add_argument("filename", nargs="?")
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output",
|
||||
help="Output file name. If not provided, output is written to stdout.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-d",
|
||||
"--use-docintel",
|
||||
action="store_true",
|
||||
help="Use Document Intelligence to extract text instead of offline conversion. Requires a valid Document Intelligence Endpoint.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-e",
|
||||
"--endpoint",
|
||||
type=str,
|
||||
help="Document Intelligence Endpoint. Required if using Document Intelligence.",
|
||||
)
|
||||
|
||||
parser.add_argument("filename", nargs="?")
|
||||
args = parser.parse_args()
|
||||
|
||||
which_exiftool = shutil.which("exiftool")
|
||||
|
||||
if args.use_docintel:
|
||||
if args.endpoint is None:
|
||||
raise ValueError(
|
||||
"Document Intelligence Endpoint is required when using Document Intelligence."
|
||||
)
|
||||
elif args.filename is None:
|
||||
raise ValueError("Filename is required when using Document Intelligence.")
|
||||
markitdown = MarkItDown(exiftool_path=which_exiftool, docintel_endpoint=args.endpoint)
|
||||
else:
|
||||
markitdown = MarkItDown(exiftool_path=which_exiftool)
|
||||
|
||||
if args.filename is None:
|
||||
markitdown = MarkItDown()
|
||||
result = markitdown.convert_stream(sys.stdin.buffer)
|
||||
_handle_output(args, result)
|
||||
else:
|
||||
markitdown = MarkItDown()
|
||||
result = markitdown.convert(args.filename)
|
||||
|
||||
_handle_output(args, result)
|
||||
_handle_output(args, result)
|
||||
|
||||
|
||||
def _handle_output(args, result: DocumentConverterResult):
|
||||
|
||||
@@ -33,22 +33,6 @@ import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from charset_normalizer import from_path
|
||||
|
||||
# Azure imports
|
||||
from azure.ai.documentintelligence import DocumentIntelligenceClient
|
||||
from azure.ai.documentintelligence.models import (
|
||||
AnalyzeDocumentRequest,
|
||||
AnalyzeResult,
|
||||
DocumentAnalysisFeature,
|
||||
)
|
||||
from azure.identity import DefaultAzureCredential
|
||||
|
||||
# TODO: currently, there is a bug in the document intelligence SDK with importing the "ContentFormat" enum.
|
||||
# This constant is a temporary fix until the bug is resolved.
|
||||
CONTENT_FORMAT = "markdown"
|
||||
|
||||
# Override mimetype for csv to fix issue on windows
|
||||
mimetypes.add_type("text/csv", ".csv")
|
||||
|
||||
# Optional Transcription support
|
||||
IS_AUDIO_TRANSCRIPTION_CAPABLE = False
|
||||
try:
|
||||
@@ -220,7 +204,7 @@ class HtmlConverter(DocumentConverter):
|
||||
return result
|
||||
|
||||
def _convert(self, html_content: str) -> Union[None, DocumentConverterResult]:
|
||||
"""Helper function that converts an HTML string."""
|
||||
"""Helper function that converts and HTML string."""
|
||||
|
||||
# Parse the string
|
||||
soup = BeautifulSoup(html_content, "html.parser")
|
||||
@@ -239,9 +223,6 @@ class HtmlConverter(DocumentConverter):
|
||||
|
||||
assert isinstance(webpage_text, str)
|
||||
|
||||
# remove leading and trailing \n
|
||||
webpage_text = webpage_text.strip()
|
||||
|
||||
return DocumentConverterResult(
|
||||
title=None if soup.title is None else soup.title.string,
|
||||
text_content=webpage_text,
|
||||
@@ -790,35 +771,6 @@ class PptxConverter(HtmlConverter):
|
||||
Converts PPTX files to Markdown. Supports heading, tables and images with alt text.
|
||||
"""
|
||||
|
||||
def _get_llm_description(
|
||||
self, llm_client, llm_model, image_blob, content_type, prompt=None
|
||||
):
|
||||
if prompt is None or prompt.strip() == "":
|
||||
prompt = "Write a detailed alt text for this image with less than 50 words."
|
||||
|
||||
image_base64 = base64.b64encode(image_blob).decode("utf-8")
|
||||
data_uri = f"data:{content_type};base64,{image_base64}"
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": data_uri,
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": prompt},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
response = llm_client.chat.completions.create(
|
||||
model=llm_model, messages=messages
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
def convert(self, local_path, **kwargs) -> Union[None, DocumentConverterResult]:
|
||||
# Bail if not a PPTX
|
||||
extension = kwargs.get("file_extension", "")
|
||||
@@ -839,38 +791,17 @@ class PptxConverter(HtmlConverter):
|
||||
# Pictures
|
||||
if self._is_picture(shape):
|
||||
# https://github.com/scanny/python-pptx/pull/512#issuecomment-1713100069
|
||||
|
||||
llm_description = None
|
||||
alt_text = None
|
||||
|
||||
llm_client = kwargs.get("llm_client")
|
||||
llm_model = kwargs.get("llm_model")
|
||||
if llm_client is not None and llm_model is not None:
|
||||
try:
|
||||
llm_description = self._get_llm_description(
|
||||
llm_client,
|
||||
llm_model,
|
||||
shape.image.blob,
|
||||
shape.image.content_type,
|
||||
)
|
||||
except Exception:
|
||||
# Unable to describe with LLM
|
||||
pass
|
||||
|
||||
if not llm_description:
|
||||
try:
|
||||
alt_text = shape._element._nvXxPr.cNvPr.attrib.get(
|
||||
"descr", ""
|
||||
)
|
||||
except Exception:
|
||||
# Unable to get alt text
|
||||
pass
|
||||
alt_text = ""
|
||||
try:
|
||||
alt_text = shape._element._nvXxPr.cNvPr.attrib.get("descr", "")
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# A placeholder name
|
||||
filename = re.sub(r"\W", "", shape.name) + ".jpg"
|
||||
md_content += (
|
||||
"\n\n"
|
||||
@@ -1387,74 +1318,6 @@ class ZipConverter(DocumentConverter):
|
||||
)
|
||||
|
||||
|
||||
class DocumentIntelligenceConverter(DocumentConverter):
|
||||
"""Specialized DocumentConverter that uses Document Intelligence to extract text from documents."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
endpoint: str,
|
||||
api_version: str = "2024-07-31-preview",
|
||||
):
|
||||
self.endpoint = endpoint
|
||||
self.api_version = api_version
|
||||
self.doc_intel_client = DocumentIntelligenceClient(
|
||||
endpoint=self.endpoint,
|
||||
api_version=self.api_version,
|
||||
credential=DefaultAzureCredential(),
|
||||
)
|
||||
|
||||
def convert(
|
||||
self, local_path: str, **kwargs: Any
|
||||
) -> Union[None, DocumentConverterResult]:
|
||||
# Bail if extension is not supported by Document Intelligence
|
||||
extension = kwargs.get("file_extension", "")
|
||||
docintel_extensions = [
|
||||
".pdf",
|
||||
".docx",
|
||||
".xlsx",
|
||||
".pptx",
|
||||
".html",
|
||||
".jpeg",
|
||||
".jpg",
|
||||
".png",
|
||||
".bmp",
|
||||
".tiff",
|
||||
".heif",
|
||||
]
|
||||
if extension.lower() not in docintel_extensions:
|
||||
return None
|
||||
|
||||
# Get the bytestring for the local path
|
||||
with open(local_path, "rb") as f:
|
||||
file_bytes = f.read()
|
||||
|
||||
# Certain document analysis features are not availiable for filetypes (.xlsx, .pptx, .html)
|
||||
if extension.lower() in [".xlsx", ".pptx", ".html"]:
|
||||
analysis_features = []
|
||||
else:
|
||||
analysis_features = [
|
||||
DocumentAnalysisFeature.FORMULAS, # enable formula extraction
|
||||
DocumentAnalysisFeature.OCR_HIGH_RESOLUTION, # enable high resolution OCR
|
||||
DocumentAnalysisFeature.STYLE_FONT, # enable font style extraction
|
||||
]
|
||||
|
||||
# Extract the text using Azure Document Intelligence
|
||||
poller = self.doc_intel_client.begin_analyze_document(
|
||||
model_id="prebuilt-layout",
|
||||
body=AnalyzeDocumentRequest(bytes_source=file_bytes),
|
||||
features=analysis_features,
|
||||
output_content_format=CONTENT_FORMAT, # TODO: replace with "ContentFormat.MARKDOWN" when the bug is fixed
|
||||
)
|
||||
result: AnalyzeResult = poller.result()
|
||||
|
||||
# remove comments from the markdown content generated by Doc Intelligence and append to markdown string
|
||||
markdown_text = re.sub(r"<!--.*?-->", "", result.content, flags=re.DOTALL)
|
||||
return DocumentConverterResult(
|
||||
title=None,
|
||||
text_content=markdown_text,
|
||||
)
|
||||
|
||||
|
||||
class FileConversionException(BaseException):
|
||||
pass
|
||||
|
||||
@@ -1474,7 +1337,6 @@ class MarkItDown:
|
||||
llm_model: Optional[str] = None,
|
||||
style_map: Optional[str] = None,
|
||||
exiftool_path: Optional[str] = None,
|
||||
docintel_endpoint: Optional[str] = None,
|
||||
# Deprecated
|
||||
mlm_client: Optional[Any] = None,
|
||||
mlm_model: Optional[str] = None,
|
||||
@@ -1544,12 +1406,6 @@ class MarkItDown:
|
||||
self.register_page_converter(ZipConverter())
|
||||
self.register_page_converter(OutlookMsgConverter())
|
||||
|
||||
# Register Document Intelligence converter at the top of the stack if endpoint is provided
|
||||
if docintel_endpoint is not None:
|
||||
self.register_page_converter(
|
||||
DocumentIntelligenceConverter(endpoint=docintel_endpoint)
|
||||
)
|
||||
|
||||
def convert(
|
||||
self, source: Union[str, requests.Response, Path], **kwargs: Any
|
||||
) -> DocumentConverterResult: # TODO: deal with kwargs
|
||||
|
||||
Reference in New Issue
Block a user