* Refactored tests. * Fixed CI errors, and included misc tests. * Omit mskanji from streaminfo test. * Omit mskanji from no hints test. * Log results of debugging in comments (linked to Magika issue) * Added docs as to when to use misc tests.
329 lines
11 KiB
Python
329 lines
11 KiB
Python
#!/usr/bin/env python3 -m pytest
|
|
import io
|
|
import os
|
|
import shutil
|
|
import openai
|
|
import pytest
|
|
|
|
from markitdown import (
|
|
MarkItDown,
|
|
UnsupportedFormatException,
|
|
FileConversionException,
|
|
StreamInfo,
|
|
)
|
|
|
|
# This file contains module tests that are not directly tested by the FileTestVectors.
|
|
# This includes things like helper functions and runtime conversion options
|
|
# (e.g., LLM clients, exiftool path, transcription services, etc.)
|
|
|
|
skip_remote = (
|
|
True if os.environ.get("GITHUB_ACTIONS") else False
|
|
) # Don't run these tests in CI
|
|
|
|
|
|
# Don't run the llm tests without a key and the client library
|
|
skip_llm = False if os.environ.get("OPENAI_API_KEY") else True
|
|
try:
|
|
import openai
|
|
except ModuleNotFoundError:
|
|
skip_llm = True
|
|
|
|
# Skip exiftool tests if not installed
|
|
skip_exiftool = shutil.which("exiftool") is None
|
|
|
|
TEST_FILES_DIR = os.path.join(os.path.dirname(__file__), "test_files")
|
|
|
|
JPG_TEST_EXIFTOOL = {
|
|
"Author": "AutoGen Authors",
|
|
"Title": "AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
|
|
"Description": "AutoGen enables diverse LLM-based applications",
|
|
"ImageSize": "1615x1967",
|
|
"DateTimeOriginal": "2024:03:14 22:10:00",
|
|
}
|
|
|
|
MP3_TEST_EXIFTOOL = {
|
|
"Title": "f67a499e-a7d0-4ca3-a49b-358bd934ae3e",
|
|
"Artist": "Artist Name Test String",
|
|
"Album": "Album Name Test String",
|
|
"SampleRate": "48000",
|
|
}
|
|
|
|
PDF_TEST_URL = "https://arxiv.org/pdf/2308.08155v2.pdf"
|
|
PDF_TEST_STRINGS = [
|
|
"While there is contemporaneous exploration of multi-agent approaches"
|
|
]
|
|
|
|
YOUTUBE_TEST_URL = "https://www.youtube.com/watch?v=V2qZ_lgxTzg"
|
|
YOUTUBE_TEST_STRINGS = [
|
|
"## AutoGen FULL Tutorial with Python (Step-By-Step)",
|
|
"This is an intermediate tutorial for installing and using AutoGen locally",
|
|
"PT15M4S",
|
|
"the model we're going to be using today is GPT 3.5 turbo", # From the transcript
|
|
]
|
|
|
|
DOCX_COMMENT_TEST_STRINGS = [
|
|
"314b0a30-5b04-470b-b9f7-eed2c2bec74a",
|
|
"49e168b7-d2ae-407f-a055-2167576f39a1",
|
|
"## d666f1f7-46cb-42bd-9a39-9a39cf2a509f",
|
|
"# Abstract",
|
|
"# Introduction",
|
|
"AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
|
|
"This is a test comment. 12df-321a",
|
|
"Yet another comment in the doc. 55yiyi-asd09",
|
|
]
|
|
|
|
BLOG_TEST_URL = "https://microsoft.github.io/autogen/blog/2023/04/21/LLM-tuning-math"
|
|
BLOG_TEST_STRINGS = [
|
|
"Large language models (LLMs) are powerful tools that can generate natural language texts for various applications, such as chatbots, summarization, translation, and more. GPT-4 is currently the state of the art LLM in the world. Is model selection irrelevant? What about inference parameters?",
|
|
"an example where high cost can easily prevent a generic complex",
|
|
]
|
|
|
|
LLM_TEST_STRINGS = [
|
|
"5bda1dd6",
|
|
]
|
|
|
|
PPTX_TEST_STRINGS = [
|
|
"2cdda5c8-e50e-4db4-b5f0-9722a649f455",
|
|
"04191ea8-5c73-4215-a1d3-1cfb43aaaf12",
|
|
"44bf7d06-5e7a-4a40-a2e1-a2e42ef28c8a",
|
|
"1b92870d-e3b5-4e65-8153-919f4ff45592",
|
|
"AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
|
|
"a3f6004b-6f4f-4ea8-bee3-3741f4dc385f", # chart title
|
|
"2003", # chart value
|
|
]
|
|
|
|
|
|
# --- Helper Functions ---
|
|
def validate_strings(result, expected_strings, exclude_strings=None):
|
|
"""Validate presence or absence of specific strings."""
|
|
text_content = result.text_content.replace("\\", "")
|
|
for string in expected_strings:
|
|
assert string in text_content
|
|
if exclude_strings:
|
|
for string in exclude_strings:
|
|
assert string not in text_content
|
|
|
|
|
|
def test_stream_info_operations() -> None:
|
|
"""Test operations performed on StreamInfo objects."""
|
|
|
|
stream_info_original = StreamInfo(
|
|
mimetype="mimetype.1",
|
|
extension="extension.1",
|
|
charset="charset.1",
|
|
filename="filename.1",
|
|
local_path="local_path.1",
|
|
url="url.1",
|
|
)
|
|
|
|
# Check updating all attributes by keyword
|
|
keywords = ["mimetype", "extension", "charset", "filename", "local_path", "url"]
|
|
for keyword in keywords:
|
|
updated_stream_info = stream_info_original.copy_and_update(
|
|
**{keyword: f"{keyword}.2"}
|
|
)
|
|
|
|
# Make sure the targted attribute is updated
|
|
assert getattr(updated_stream_info, keyword) == f"{keyword}.2"
|
|
|
|
# Make sure the other attributes are unchanged
|
|
for k in keywords:
|
|
if k != keyword:
|
|
assert getattr(stream_info_original, k) == getattr(
|
|
updated_stream_info, k
|
|
)
|
|
|
|
# Check updating all attributes by passing a new StreamInfo object
|
|
keywords = ["mimetype", "extension", "charset", "filename", "local_path", "url"]
|
|
for keyword in keywords:
|
|
updated_stream_info = stream_info_original.copy_and_update(
|
|
StreamInfo(**{keyword: f"{keyword}.2"})
|
|
)
|
|
|
|
# Make sure the targted attribute is updated
|
|
assert getattr(updated_stream_info, keyword) == f"{keyword}.2"
|
|
|
|
# Make sure the other attributes are unchanged
|
|
for k in keywords:
|
|
if k != keyword:
|
|
assert getattr(stream_info_original, k) == getattr(
|
|
updated_stream_info, k
|
|
)
|
|
|
|
# Check mixing and matching
|
|
updated_stream_info = stream_info_original.copy_and_update(
|
|
StreamInfo(extension="extension.2", filename="filename.2"),
|
|
mimetype="mimetype.3",
|
|
charset="charset.3",
|
|
)
|
|
assert updated_stream_info.extension == "extension.2"
|
|
assert updated_stream_info.filename == "filename.2"
|
|
assert updated_stream_info.mimetype == "mimetype.3"
|
|
assert updated_stream_info.charset == "charset.3"
|
|
assert updated_stream_info.local_path == "local_path.1"
|
|
assert updated_stream_info.url == "url.1"
|
|
|
|
# Check multiple StreamInfo objects
|
|
updated_stream_info = stream_info_original.copy_and_update(
|
|
StreamInfo(extension="extension.4", filename="filename.5"),
|
|
StreamInfo(mimetype="mimetype.6", charset="charset.7"),
|
|
)
|
|
assert updated_stream_info.extension == "extension.4"
|
|
assert updated_stream_info.filename == "filename.5"
|
|
assert updated_stream_info.mimetype == "mimetype.6"
|
|
assert updated_stream_info.charset == "charset.7"
|
|
assert updated_stream_info.local_path == "local_path.1"
|
|
assert updated_stream_info.url == "url.1"
|
|
|
|
|
|
def test_docx_comments() -> None:
|
|
markitdown = MarkItDown()
|
|
|
|
# Test DOCX processing, with comments and setting style_map on init
|
|
markitdown_with_style_map = MarkItDown(style_map="comment-reference => ")
|
|
result = markitdown_with_style_map.convert(
|
|
os.path.join(TEST_FILES_DIR, "test_with_comment.docx")
|
|
)
|
|
validate_strings(result, DOCX_COMMENT_TEST_STRINGS)
|
|
|
|
|
|
def test_input_as_strings() -> None:
|
|
markitdown = MarkItDown()
|
|
|
|
# Test input from a stream
|
|
input_data = b"<html><body><h1>Test</h1></body></html>"
|
|
result = markitdown.convert_stream(io.BytesIO(input_data))
|
|
assert "# Test" in result.text_content
|
|
|
|
# Test input with leading blank characters
|
|
input_data = b" \n\n\n<html><body><h1>Test</h1></body></html>"
|
|
result = markitdown.convert_stream(io.BytesIO(input_data))
|
|
assert "# Test" in result.text_content
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
skip_remote,
|
|
reason="do not run tests that query external urls",
|
|
)
|
|
def test_markitdown_remote() -> None:
|
|
markitdown = MarkItDown()
|
|
|
|
# By URL
|
|
result = markitdown.convert(PDF_TEST_URL)
|
|
for test_string in PDF_TEST_STRINGS:
|
|
assert test_string in result.text_content
|
|
|
|
# Youtube
|
|
result = markitdown.convert(YOUTUBE_TEST_URL)
|
|
for test_string in YOUTUBE_TEST_STRINGS:
|
|
assert test_string in result.text_content
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
skip_remote,
|
|
reason="do not run remotely run speech transcription tests",
|
|
)
|
|
def test_speech_transcription() -> None:
|
|
markitdown = MarkItDown()
|
|
|
|
# Test WAV files, MP3 and M4A files
|
|
for file_name in ["test.wav", "test.mp3", "test.m4a"]:
|
|
result = markitdown.convert(os.path.join(TEST_FILES_DIR, file_name))
|
|
result_lower = result.text_content.lower()
|
|
assert (
|
|
("1" in result_lower or "one" in result_lower)
|
|
and ("2" in result_lower or "two" in result_lower)
|
|
and ("3" in result_lower or "three" in result_lower)
|
|
and ("4" in result_lower or "four" in result_lower)
|
|
and ("5" in result_lower or "five" in result_lower)
|
|
)
|
|
|
|
|
|
def test_exceptions() -> None:
|
|
# Check that an exception is raised when trying to convert an unsupported format
|
|
markitdown = MarkItDown()
|
|
with pytest.raises(UnsupportedFormatException):
|
|
markitdown.convert(os.path.join(TEST_FILES_DIR, "random.bin"))
|
|
|
|
# Check that an exception is raised when trying to convert a file that is corrupted
|
|
with pytest.raises(FileConversionException) as exc_info:
|
|
markitdown.convert(
|
|
os.path.join(TEST_FILES_DIR, "random.bin"), file_extension=".pptx"
|
|
)
|
|
assert len(exc_info.value.attempts) == 1
|
|
assert type(exc_info.value.attempts[0].converter).__name__ == "PptxConverter"
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
skip_exiftool,
|
|
reason="do not run if exiftool is not installed",
|
|
)
|
|
def test_markitdown_exiftool() -> None:
|
|
which_exiftool = shutil.which("exiftool")
|
|
assert which_exiftool is not None
|
|
|
|
# Test explicitly setting the location of exiftool
|
|
markitdown = MarkItDown(exiftool_path=which_exiftool)
|
|
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test.jpg"))
|
|
for key in JPG_TEST_EXIFTOOL:
|
|
target = f"{key}: {JPG_TEST_EXIFTOOL[key]}"
|
|
assert target in result.text_content
|
|
|
|
# Test setting the exiftool path through an environment variable
|
|
os.environ["EXIFTOOL_PATH"] = which_exiftool
|
|
markitdown = MarkItDown()
|
|
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test.jpg"))
|
|
for key in JPG_TEST_EXIFTOOL:
|
|
target = f"{key}: {JPG_TEST_EXIFTOOL[key]}"
|
|
assert target in result.text_content
|
|
|
|
# Test some other media types
|
|
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test.mp3"))
|
|
for key in MP3_TEST_EXIFTOOL:
|
|
target = f"{key}: {MP3_TEST_EXIFTOOL[key]}"
|
|
assert target in result.text_content
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
skip_llm,
|
|
reason="do not run llm tests without a key",
|
|
)
|
|
def test_markitdown_llm() -> None:
|
|
client = openai.OpenAI()
|
|
markitdown = MarkItDown(llm_client=client, llm_model="gpt-4o")
|
|
|
|
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test_llm.jpg"))
|
|
for test_string in LLM_TEST_STRINGS:
|
|
assert test_string in result.text_content
|
|
|
|
# This is not super precise. It would also accept "red square", "blue circle",
|
|
# "the square is not blue", etc. But it's sufficient for this test.
|
|
for test_string in ["red", "circle", "blue", "square"]:
|
|
assert test_string in result.text_content.lower()
|
|
|
|
# Images embedded in PPTX files
|
|
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test.pptx"))
|
|
# LLM Captions are included
|
|
for test_string in LLM_TEST_STRINGS:
|
|
assert test_string in result.text_content
|
|
# Standard alt text is included
|
|
validate_strings(result, PPTX_TEST_STRINGS)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""Runs this file's tests from the command line."""
|
|
for test in [
|
|
test_stream_info_operations,
|
|
test_docx_comments,
|
|
test_input_as_strings,
|
|
test_markitdown_remote,
|
|
test_speech_transcription,
|
|
test_exceptions,
|
|
test_markitdown_exiftool,
|
|
test_markitdown_llm,
|
|
]:
|
|
print(f"Running {test.__name__}...", end="")
|
|
test()
|
|
print("OK")
|
|
print("All tests passed!")
|